BACHELOR 'S PROGRAMME 1st YEAR OF STUDY, 1st SEMESTER

Course title			PHYSICS OF NUCLEUS & ELEMENTARY PARTICLES PHYSICS
COURSE CODE			
COURSE TYPE			full attendance
COURSE LEVEL			1 st cycle (bachelor's degree)
YEAR OF STUDY, SEMESTER			1 st year of study, 1 st semester
NUMBER OF ECTS CREDITS			6
			7 (3 lecture hours + 4 seminar hours)
			Conf. dr. Catalin-Gabriel BORCIA
			Lect dr. Adeline CIOCAN
			Advanced lovel of English
A	Genera	al AND COURSE-SPECI	FIC COMPETENCES
	Genera	II competences.	facalanal taalya officiantiy and companyibly, in compliance with the field on eific
	$ \rightarrow$	Achievement of pro	ressional tasks enciently and responsibly, in compliance with the field-specific
			on, with qualified assistance.
	$ \rightarrow$	Elaboration of a sp	ectally of licence work, respecting the objectives, proposed deadlines and
		norms of profession	
	$ \rightarrow$	Application of efficie	ent work techniques in a multi-disciplinary team, on various hierarchical levels.
	$ \rightarrow$	Realization of a pro	ject/ team activity and identification of specific professional roles
	$ \rightarrow$	Effective use of inf	ormation sources and communication resources and assisted professional
		training, both in Ror	nanian and in a foreign language.
	$ \rightarrow$	Elaboration, draftin	g and presentation in Romanian and/ or in a language of international
		circulation of a spec	cialty work on a current topic in the field.
	Course	-specific competen	Ces:
	\rightarrow	Identification and pr	oper use of the main laws and physical principles in a given context.
	\rightarrow	and laws of Physics	g torritulas for calculations with physical quantities using appropriate principles
	\rightarrow	Description of phys	. ical systems, using specific theories and tools (experimental and theoretical
		models, algorithms,	schemes, etc.)
	\rightarrow	Application of the pr	inciples and laws of Physics in solving theoretical or practical problems, under
		Correct application	conditions.
		achieve the specifie	d performances.
	\rightarrow	Comparative asses	sment of the theoretical results offered by literature and of an experiment
		conducted in the fra	mework of a professional project.
	\rightarrow	Solving of Physics p	problems in given conditions, using numerical and statistical methods.
	\rightarrow	specific physical dat	ancal methods and mathematical statistics in the analysis and processing of
	\rightarrow	Elaboration of grap	hs and reports for explaining and interpreting physical results obtained by
		statistical methods.	
	\rightarrow	Correlation of s	statistical analysis methods on a given topic (realization of
		measurements/calc	ulations, data processing, interpretation).
	\rightarrow	theoretical values u	using statistical validation methods and/ or numerical methods
	\rightarrow	Elaboration of a pr	oject using the principles and methods of mathematical statistics and/ or
		numerical methods	in a given physical context.
	\rightarrow	Application of Phys	ics knowledge in given situations in related fields, as well as in experiments,
		Application of Phys	ratory equipment.
	\rightarrow	using standard labo	ratory equipment.
	\rightarrow	Explanation and i	nterpretation of physical phenomena by formulating assumptions and
		operationalizing key	concepts and proper use of laboratory equipment.
	\rightarrow	Identification of Ph	ysics and Informatics methods, techniques and tools; Design of Physics
		Critical assessment	pecilic laboratory methods and equipment.
		uncertainty of the ol	btained experimental results.
	\rightarrow	Implementation, imp	provement and extension of a physical model utilisation. Making experimental
		devices capable of	validating a physical model.

	→ Interdisciplinary approach of Physics-related topics.		
	\rightarrow Make of necessary connections to use physical phenomena, using basic knowledge from close		
	domains (Chemistry, Biology, etc.)		
D	\rightarrow Responsible performing independent work tasks and interdisciplinary approach of topics.		
D	Learning our completion of this discipline, students will be able to:		
	Identify and adequately use the main laws and physical principles in a given context		
	 Resolve physics problems under imposed conditions using numerical and statistical methods 		
	Apply knowledge in the field of physics both in concrete situations in related fields and in		
	experiments using standard laboratory equipment		
	 Analyze and interpret data obtained from numerical measurements or simulations 		
	Efficiently use information sources and communication resources and assisted training in		
	 Chap. I. General properties of the atomic nucleus: charge, mass, bonding energy, stability, electrical and magnetic moments. 		
	Chan II Radioactivity: types laws characteristic quantities		
	 Chap. III Interaction of nuclear radiation with substance. The case of electrically charged radiation 		
	Chap. IV Interaction of nuclear radiation with substance. Cases of photons and neutrons		
	Chap. V Radiation detectors: gas detectors		
	Chap. V Radiation detectors: scintillation detector, semiconductor detectors		
	Chap. VI Nuclear models: liquid drop model of the nucleus, nuclear shells model		
	Chap. VI Nuclear forces. Properties of nuclear forces		
	Chap. VII Types of decay alpha beta gamma		
	Chap. VIII Nuclear Reactions: Conservation laws: conservation of charge, energy, impulse, kinetic momentum and parity. Types of nuclear resettions		
	Chap IX Nuclear reactions: Reaction mechanisms. Artificial radioactivity. Transuranic elements		
	 Chap. IX Nuclear reactions. Reaction mechanisms. Anincial radioactivity. Transulance elements. Chap. IX Nuclear reactions used as energy sources. Fission. Nuclear fusion. 		
	 Chap. X Particle accelerators. Cvclic accelerators and linear accelerators 		
	Chap. X Elementary particles: classification, properties		
D	RECOMMENDED READING FOR LECTURES		
	1. E. Lozneanu, Fizică nucleară, Ed. Universității "Al. I. Cuza" lasi (2003)		
	2. A. Das, T. Ferbel, Introduction to Nuclear and Particle Physics, World Scientific, Singapore (2003)		
	3 Glenn Knoll "Radiation Detection and Measurement" Ed. John Wiley & Sons, New-York (1989)		
	4 Emilio Segre Nuclei and Particles" Ed. W.A. Benjamin. Inc. (1977)		
	5 Helmut Wiedemann Particle Accelerator Physics Springer-Verlag Berlin Heidelberg (2007)		
F	Schemat Wedemann, Fanice Accelerator Physics, Springer-Venag Denin Heideberg (2007)		
	Rules for work safety and protection		
	 Methods and software for modeling the interaction of ionizing radiation with the substance 		
	 Methods of obtaining and processing the results of measurements in nuclear physics (Part I) 		
	 Methods of obtaining and processing the results of measurements in nuclear physics (Part II) 		
	Statistical fluctuations in radioactivity measurements		
	 Methods of determining the activity of radioactive sources 		
	Study of beta-ray absorption in various materials		
	Study of interaction of gamma radiation with substance		
	 Processing of data obtained from previous work, discussions, analysis of results, partial evaluation of students 		
	or study of the Geiger-Muller counter		
	Determining the energy of alpha particles		
	 Determination of the maximum energy of beta particles with a complex spectrum 		
	Gamma spectrometry – study of the single-channel analyzer		
	Gamma spectrometry – study of the multi-channel analyzer		
	Processing of data obtained from previous work, discussions, analysis of results, final evaluation		
	of students.		
	SEMINAR CONTENT		
	 General properties of the atomic nucleus, calculating the binding energy, methods of determining the properties of the public applications. 		
	ne properties of the nuclei, applications.		
	 Natioactivity, types, laws, characteristic qualities Interaction of nuclear radiation with substance. Case of electrically charged radiation, applications 		
	 Interaction of nuclear radiation with substance. Cases of photons and neutrons. Applications 		
	Gas detectors, applications		
	 Scintillation detector, semiconductor detectors, applications in nuclear spectrometry 		
	• The drop model of the atomic nucleus, applications. Nuclear shell model, applications for		
	calculating magnetic moments of nuclei.		
	Nuclear forces. Properties of the nuclear forces		

	 Types of decays: al Nuclear reactions: of 	pha, beta and gamma; applications.			
	 Nuclear reactions: Reaction mechanisms. Artificial radioactivity, methods of obtaining artificial radionuclides, applications. 				
	Nuclear reactions used as energy sources. Fission. Nuclear fusion				
	Particle accelerators: linear accelerator, betatron, cyclotron, applications.				
	 Final review. 				
F RECOMMENDED READING FOR SEMINARS					
	1. D. Mihăilescu, E. Lozne	anu, Lucrări practice de fizică nucleară, Ed. Univ. Al. I. Cuza Iași, 2001.			
	2. G. Ioniţă, E. Lozneanu,	E. Tereja, D. Alexandroaie, Culegere de probleme de fizică nucleară, Ed. Univ.			
	Al. I. Cuza laşi, 1984.				
	3. Yung-Kuo Lim, Proble	ms and Solutions on Atomic, Nuclear and Particle Physics, World Scientific			
	Publishing Co. Ltd., Sin	gapore 2000			
	4. Ahmad A. Kamal, 1000	Solved Problems in Modern Physics, Springer-Verlag, Berlin Heidelberg 2010			
G	EDUCATION STYLE				
LEARNING AND TEACHING METHODS		Lecture, thematic debates, applications			
		Discussion, practical work			
		Dialogue, explanation, demonstration, problem solving			
ASSESSMENT METHODS		Exam			
		Laboratory reports			
LANGUAGE OF INSTRUCTION		English			