BACHELOR 'S PROGRAMME 2nd YEAR OF STUDY, 1st SEMESTER

COURSE TITLE	Optics
COURSE CODE	
COURSE TYPE	full attendance
COURSE LEVEL	1 st cycle (bachelor's degree)
YEAR OF STUDY, SEMESTER	2 nd year of study, 1 st semester
NUMBER OF ECTS CREDITS	5
NUMBER OF HOURS PER WEEK	7 (3 lecture hours + 4 seminar hours)
NAME OF LECTURE HOLDER	Lect. Univ. Dr. Cătălin AGHEORGHIESEI
NAME OF SEMINAR HOLDER	Lect, Univ. Dr. Cătălin AGHEORGHIESEI, Lect, Univ. Dr. Bogdănel-
	Silvestru MUNTEANU
PREREQUISITES	Advanced level of English
General competences:	
Achievement of n	rafessional tasks officiently and responsibly, in compliance with the field specific
deontology legisl	ation, with gualified assistance.
\rightarrow Application of effi	cient work techniques in a multi-disciplinary team, on various hierarchical levels.
\rightarrow Effective use of	information sources and communication resources and assisted professional
training, both in F	comanian and in a foreign language.
Course-specific competer	nces:
→ Derivation of worl	ting formulas for calculations with physical quantities using appropriate principles
\rightarrow Description of ph	cs. ysical systems, using specific theories and tools (experimental and theoretical
models, algorithm	is, schemes, etc.)
\rightarrow Application of the	principles and laws of Physics in solving theoretical or practical problems, under
\rightarrow Correct application	ce conditions.
achieve the spec	fied performances.
→ Comparative ass conducted in the	essment of the theoretical results offered by literature and of an experiment framework of a professional project.
→ Elaboration of gr statistical method	aphs and reports for explaining and interpreting physical results obtained by s.
→ Correlation of	statistical analysis methods on a given topic (realization of
→ Application of Ph	ysics knowledge both in given situations in related fields and in experiments,
→ Explanation and	interpretation of physical phenomena by formulating assumptions and exconcepts and proper use of laboratory equipment
→ Identification of	Physics and Informatics methods, techniques and tools; Design of Physics
→ Critical assessme of uncertainty of t	ent of the results obtained by employing a physical model, including the degree the obtained experimental results.
→ Implementation, i devices capable	mprovement and extension of a physical model utilization. Making experimental of validating a physical model.
B LEARNING OUTCOMES	
On successful completion	of this subject, students will be able to:
Describes the ma	in optical phenomena and optical radiation propagation theories
Io explain how o	otical phenomena, occur and take place, based on models proposed
Compute the phy certain given con	ditions
Critically analyze	the results
Use theoretical n	ptions for designing and experimenting with optics
Apply the knowle	dge gained in solving some optical problems in physics and astrophysics
C LECTURE CONTENT	
Electromagnetic Waves	stromagnetic waves:
- Emission of elect	romagnetic waves;
- Flux densities of	energy and momentum;

y Press, 2008
y Press, 2008
y Press, 2008 xamples, and

G EDUCATION STYLE	
LEARNING AND TEACHING METHODS	Lectures,
	Problems solving
	Experiment
	Report, Discussions
ASSESSMENT METHODS	 Exam: problems and theory
	Final test
LANGUAGE OF INSTRUCTION	English